Achieving Equalized Odds by Resampling Sensitive Attributes

We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness. This is achieved by introducing a general discrepancy functional that rigorously quantifies violations of this criterion. This differentiable functional is used as a penalty driving the model parameters towards equalized odds. To rigorously evaluate fitted models, we develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature. Both the model fitting and hypothesis testing leverage a resampled version of the sensitive attribute obeying equalized odds, by construction. We demonstrate the applicability and validity of the proposed framework both in regression and multi-class classification problems, reporting improved performance over state-of-the-art methods. Lastly, we show how to incorporate techniques for equitable uncertainty quantification—unbiased for each group under study—to communicate the results of the data analysis in exact terms.

Certifying and removing disparate impact

We present four contributions. First, we link disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on how well the protected class can be predicted from the other attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.

Equality of Opportunity in Supervised Learning

We propose a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features. Assuming data about the predictor, target, and membership in the protected group are available, we show how to optimally adjust any learned predictor so as to remove discrimination according to our definition. Our framework also improves incentives by shifting the cost of poor classification from disadvantaged groups to the decision maker, who can respond by improving the classification accuracy. In line with other studies, our notion is oblivious: it depends only on the joint statistics of the predictor, the target and the protected attribute, but not on interpretation of individual features. We study the inherent limits of defining and identifying biases based on such oblivious measures, outlining what can and cannot be inferred from different oblivious tests. We illustrate our notion using a case study of FICO credit scores.

Data preprocessing techniques for classification without discrimination

Recently, the following Discrimination-Aware Classification Problem was introduced: Suppose we are given training data that exhibit unlawful discrimination; e.g., toward sensitive attributes such as gender or ethnicity. The task is to learn a classifier that optimizes accuracy, but does not have this discrimination in its predictions on test data. This problem is relevant in many settings, such as when the data are generated by a biased decision process or when the sensitive attribute serves as a proxy for unobserved features. In this paper, we concentrate on the case with only one binary sensitive attribute and a two-class classification problem. We first study the theoretically optimal trade-off between accuracy and non-discrimination for pure classifiers. Then, we look at algorithmic solutions that preprocess the data to remove discrimination before a classifier is learned. We survey and extend our existing data preprocessing techniques, being suppression of the sensitive attribute, massaging the dataset by changing class labels, and reweighing or resampling the data to remove discrimination without relabeling instances. These preprocessing techniques have been implemented in a modified version of Weka and we present the results of experiments on real-life data.

Removing biased data to improve fairness and accuracy

Machine learning systems are often trained using data collected from historical decisions. If past decisions were biased, then automated systems that learn from historical data will also be biased. We propose a black-box approach to identify and remove biased training data. Machine learning models trained on such debiased data (a subset of the original training data) have low individual discrimination, often 0%. These models also have greater accuracy and lower statistical disparity than models trained on the full historical data. We evaluated our methodology in experiments using 6 real-world datasets. Our approach outperformed seven previous approaches in terms of individual discrimination and accuracy.

We pledge 1% of our equity and staff time to diversifying tech and leadership representation