Fairness General Theory

A Causal Bayesian Networks Viewpoint on Fairness

We offer a graphical interpretation of unfairness in a dataset as the presence of an unfair causal path in the causal Bayesian network representing the data-generation mechanism. We use this viewpoint to re-visit the recent debate surrounding the COMPAS pretrial risk assessment tool and, more generally, to point out that fairness evaluation on a model requires careful considerations on the patterns of unfairness underlying the training data. We show that causal Bayesian networks provide us with a powerful tool to measure unfairness in a dataset and to design fair models in complex unfairness scenarios.

Algorithmic decision making and the cost of fairness

Algorithms are now regularly used to decide whether defendants awaiting trial are too dangerous to be released back into the community. In some cases, black defendants are substantially more likely than white defendants to be incorrectly classified as high risk. To mitigate such disparities, several techniques have recently been proposed to achieve algorithmic fairness. Here we reformulate algorithmic fairness as constrained optimization: the objective is to maximize public safety while satisfying formal fairness constraints designed to reduce racial disparities. We show that for several past definitions of fairness, the optimal algorithms that result require detaining defendants above race-specific risk thresholds. We further show that the optimal unconstrained algorithm requires applying a single, uniform threshold to all defendants. The unconstrained algorithm thus maximizes public safety while also satisfying one important understanding of equality: that all individuals are held to the same standard, irrespective of race. Because the optimal constrained and unconstrained algorithms generally differ, there is tension between improving public safety and satisfying prevailing notions of algorithmic fairness. By examining data from Broward County, Florida, we show that this trade-off can be large in practice. We focus on algorithms for pretrial release decisions, but the principles we discuss apply to other domains, and also to human decision makers carrying out structured decision rules.

We pledge 1% of our equity and staff time to diversifying tech and leadership representation